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Abstract: The healthcare sector is a significant contributor to global energy consumption, particularly within the 
heating, ventilation, and air conditioning (HVAC) market, due to stringent requirements for maintaining indoor 
thermal comfort for patients, staff, and visitors in hospital wards, rooms, and intensive care units. This study presents 
a novel approach employing a Machine Learning-based Linear Regression Algorithm to predict indoor adaptive 
thermal comfort within the inpatient medical wards. The methodology establishes a robust correlation between key 
indoor environmental parameters including air temperature, relative humidity, and air velocity, and thermal comfort 
indices, including Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD). Real-time 
measurements of indoor environmental conditions were conducted in selected hospitals in Islamabad, Pakistan, 
utilizing calibrated sensors to capture ambient temperature, wet bulb globe temperature, relative humidity, air 
velocity, light intensity, and CO₂ levels. This empirical data was integrated with responses from thermal comfort 
questionnaires, assessing the perceptions of patients, medical staff, and visitors regarding thermal sensation, 
acceptability, preference, and overall comfort. The adaptive ML-based, predictive analysis identified optimal thermal 
comfort ranges for hospital wards, recommending indoor air temperatures between 22.0°C and 23.0°C, relative 
humidity levels between 50% and 55%, and air velocities between 0.1 and 0.2 m/s. The findings revealed a 
significant impact of overcooling and undercooling on PMV and PPD levels, emphasizing the need for precise 
HVAC system control to enhance both energy efficiency and occupant comfort. This research contributes to 
advancing adaptive thermal comfort modeling in healthcare facilities, offering insights for sustainable HVAC 
management and improved patient outcomes. 
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1. Introduction 
A hospital can be considered a complex building when compared to other buildings’ infrastructure 

due to the requirement of healthcare units in providing crucial clinical facilities, ensuring patients’ needs 
are met in the most effective manner (Rahman, Zaki, & Husain, 2019). Thermal comfort analysis in 
healthcare facilities provides a satisfactory insight of an individual whether a patient, hospital medical 
staff including doctors, nurses, technicians or visitors in terms of improving their comfort level and 
satisfaction within the hospital’s indoor environment (ASHRAE, 2013). The hospital buildings are 
designed in such a manner to facilitate patients with various health conditions requiring specified indoor 
environmental requirements as well as a safe and comfortable working atmosphere, vital for the 
paramedical staff. The highly energy intensive requirements by both patients and hospital staff result in 
a significant increase in the energy consumption levels owing to the abundance of HVAC facilities, 
accounting for more than 50% of the total energy consumptions in buildings (P´erez-Lombard, Ortiz, & 
Pout, 2008). The majority of occupants in hospitals yet remain unsatisfied with the indoor environment 
(Wang, 2006) and therefore, it becomes necessary to maintain a comfortable indoor environment for 
occupants’, while simultaneously minimizing energy consumption levels (Li, et al., 2023). Latest 
researches on optimized and energy efficient HVAC systems have yielded novel solutions for both 
commercial and residential building environments. A study by (Saoud, Boukhchana, & Fellah, 2024) 
presented a novel solar based single effect lithium bromide (Li-Br) water absorption chiller system which 
comprised thermodynamic evaluation of design parameters including cooling capacity, COP, and exergy 
efficiency, followed by heat exchanger effectiveness, and hot source temperatures. An 
absorber/condenser inlet temperature of 30 °C yielded a high COP of 0.8, Cooling Capacity of 30.05 kW. 
A Novel Hybrid Indirect Direct Evaporative Cooling (HIDEC) System was experimentally tested for hot 
and dry and hot and dry subtropical climate, yielding the lowest supply air temperature of 24.8 °C, a 
maximum COP of 35.2 (Khan, et al., 2024). The HIDEC system was developed considering the thermal 
comfort ranges within the built environments, with measured elevation in dew point effectiveness to 80% 
and wet bulb effectiveness to 85%.  

Another Research proposed the integration of a single effect double lift absorption chiller system 
modelled using thermodynamic parametric analysis yielding optimal cooling capacity of 106.1 kW, 
utilizing low grade heat energy with notable temperature difference in the driving heat stream of 10 times, 
approx.36.0 °C instead of 3.5 °C notably enhancing cold generation (Saoud, Bruno, Boukhchanaa, & 
Fellah, 2023). A study presented the Numerical modelling of a novel single effect absorption refrigeration 
system (ARS) with a cooling capacity of 16 kW using the Engineering Equation Solver, incorporating 
lithium bromide and water as working fluids (Saoud, Boukhchana, & Fellah, 2024). The parametric 
analysis of the ARS indicated the absorber temperature being the key variable in energetic efficiency 
regulation of the chiller system. 

The development of an accurate thermal comfort model is necessary to attain a comfortable indoor 
environment with reduced energy consumption levels. Two basic thermal comfort models are utilized in 
evaluation of indoor thermal environment in buildings including the static and adaptive comfort models. 
The static model introduced by P.O. Fanger utilized the heat balance equation, recommended for air-
conditioned indoor spaces where the impact of thermal environment was considered to be indirect 
(Fanger, 1970). The static method constitutes the Predicted Mean Vote/Predicted Percentage of 
Dissatisfied (PMV/PPD) thermal comfort model incorporated as per the ASHRAE standard—55 which 
formulates indoor thermal comfort condition requirements, notably the 80% satisfaction threshold of 
occupants in indoor built environments (ASHRAE, 2020). PMV is mainly used in the evaluation of 
human satisfaction and thermal comfort levels accredited by both ASHRAE and ISO 7730 standards 
(International Organization for Standardization, 2005). The PMV index incorporates both indoor 
environmental and subjective parameters (Zare, et al., 2018). Indoor environmental parameters comprise 
of indoor temperature, indoor relative humidity, mean radiant temperature, and indoor air velocity 
whereas the subjective parameters consist of metabolic rate and clothing insulation (CLO) (Ozbey & 
Turhan, 2023).  

The other model being utilized by various researchers in thermal comfort analysis is the adaptive 
thermal comfort model which incorporates the impact of outdoor climatic conditions on the indoor 
thermal comfort level of occupants due to the aptitude of indoor occupants in adapting to various climatic 
and temperate conditions during the annual seasonal shifts (Dear & Brager, 1998; Nicol & Humphreys, 
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2002). The conventional thermal comfort models are based on statistical techniques which utilize 
experimental data in predicting thermal comfort levels however, such methods often give considerable 
prediction errors (Maier & Marggraf Micheel, 2015; Chan & Chau, 2021). Some researchers use 
computational fluid dynamics (CFD) developing indoor thermal and environmental conditions to achieve 
thermal comfort prediction results (Nimarshana, Attalage, & Perera, 2022; Javad & Navid, 2019); 
however, such methods require a lot of computational power and multiple iterations to yield convergence 
making the overall process time consuming due to slower simulation speeds. The latest advances in data 
sciences and emergence of Artificial Intelligence have led to many researchers adopting Machine 
Learning (ML) algorithms in formulating thermal comfort prediction models (Chaudhuri, Soh, Li, & Xie, 
2020; Jia, Choi, Liu, & Susman, 2022). 

The ML thermal comfort models are used to evaluate the relationships between the thermal sensation 
feedback provided by occupants and the impact of parameters by themselves, without any prior 
information on the physical impacts of each factor due to the self-learning ability of the model (Zhou, et 
al., 2020). Moreover, such models are able to rectify or adjust the comfort relations within the parameters 
themselves, when applied to different scenarios due to their self-correction ability. The ML thermal 
comfort models provide the analyst the possibility to test different input combinations and obtain the 
most optimum parameter or test set; moreover, ML based thermal comfort models can be incorporated 
in average based models as well as Personal Comfort Models (PCMs) (Fard, Zomorodian, & Korsavi, 
2022). 

2. Literature Review 
The notable merits of the recently investigated ML based thermal comfort analysis and its 

implementation in building indoor thermal environment and energy management, particularly in 
hospitals, has been of interest to many researchers. A comprehensive review by (Wang, et al., 2021) 
explored key issues including the non-uniformity and divergence in research objects or features, 
diversified ML based algorithms, limited data resource collection and methodologies, non-uniformity in 
data structures, tech-oriented research shifts, insufficient adaptability of ML model and lack of 
confidence by model user. Reviewing latest studies on ML based thermal comfort analysis can help 
researchers further identify potential research gaps and working domains with an intra-comparison of 
different ML algorithms being implemented and the occupants’ response. In a research by (Luo, et al., 
2020), a comparison was made between the performance of different ML algorithms, and it was 
suggested that building parameters including building type, building operation modes, and climatic 
conditions did not remain amongst the top ranked parameters considering their impact. Nevertheless, 
these parameters had their effect on the thermal perception of occupants and required further 
investigation considering their impacts.  

A research by (Shan, et al., 2020) outlined that an occupant possessed its unique thermo-regulation 
mode and an individual response to thermal stress, making it necessary to develop Personal Comfort 
Models (PCMs) for an independent occupant based, thermal comfort analysis and prediction. A recent 
study by (Ilmiawan, Zaki, Singh, & Khalid, 2024) on personalized thermal comfort (PTC) utilized desk 
fans as an airflow medium in conjunction to the air conditioning in building which allowed maintenance 
of thermal comfort of occupants at a personal level. An investigation on impact of wind speed and 
direction upon thermal comfort and occupants’ skin temperature under regulated personalized occupant 
space at 29.0 °C using air conditioning was made which allowed mapping of different body parts of the 
occupant targeted for wind movement to achieve thermal comfort ranges. A research by (Gong, et al., 
2023) developed an Artificial Neural Network (ANN) based ML model which effectively predicted the 
in-patients’ personalized thermal sensation in rehabilitation wards of a general hospital in Xuzhou, China. 
The ANN thermal comfort model effectively predicted the thermal sensation of patients, and it was also 
identified that the inclusion of spatial and health relevant parameters into the ANN model yielded an 
improved prediction accuracy estimated at 8.10% higher than the baseline model.  

A study by (Ma, Wang, Ye, Wang, & Dong, 2023) utilized Deep Learning (DL) algorithms in 
developing direct and indirect thermal comfort prediction models in real time. The indirect DL based 
prediction model incorporated the Bi-directional Long Short-Term Memory (Bi-LSTM) algorithm in the 
prediction of indoor environmental parameters and the thermal comfort real time prediction results were 
evaluated using the PMV calculation methodology. The accuracy, robustness and performance of DL 
based Bi-LSTM model was analyzed and compared using different time scales, whereas the impact of 
indoor air temperature and relative humidity prediction uncertainty on the overall thermal comfort 
prediction accuracy was analyzed for a 10 min, 30 min, and 60 min time interval. The accuracy of the 
DL based Bi-LSTM model in thermal comfort prediction on smaller time scale was higher than larger 
time scale during which RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) reached 
0.0551 and 0.0543 on the 10 min scale. The Bi-LSTM model was recommended for integration in control 
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modelling of HVAC systems thus being a reference during optimization of indoor thermal comfort 
analysis. 

An empirical study conducted by (Ma, Deng, Lu, Zhou, & Liu, 2023) in dental treatment departments 
within four hospitals in Ningbo, China investigated the current thermal environment, thermal sensation 
of hospital staff, seasonal variation of metabolic rate in occupants and clothing insulation (CLO). 
Adaptive thermal comfort models for dentists were developed providing a comparison between thermal 
environment and comfort in public hospitals and private clinics. The thermo-neutral temperature was 
derived using PMV and TSV regression, Griffith’s method, and thermal comfort temperature range. The 
preferred operating temperature for hospital staff was evaluated using the adaptive predicted mean vote 
(aPMV) model. The research yielded favorable comfort temperatures which in comparison were lower 
than the established adaptive threshold but remained closely aligned with the temperature ranges 
suggested for healthcare and hospital buildings design considerations.  

An investigation on comfort temperature and thermal adaptation of patients and visitors in three 
different Malaysian hospitals outlined a mean comfort indoor operative temperature of 25.3 °C for 
patients and 25.5 °C for visitors (Khalid, Zaki, Rijal, & Yakub, 2019). The analysis yielded a cost saving 
potential for hospitals and enhanced thermal comfort of hospital occupants by increased indoor set-point 
temperatures.  A research  investigated the applicability of steady-state thermal comfort methodology in 
hot climate zones conducted specifically on 120 hospital patients in Jeddah, Saudi Arabia (Alotaibi, Lo, 
Southwood, & Coley, 2020). The study comprised environmental monitoring and assessment of 
cumulative thermal comfort parameters with simultaneous estimation of CLO and metabolic activity 
levels for patients admitted in surgical and medical wards. The study outlined a significant variance in 
results of TSV assessed using patient surveys and questionnaires, and the PMV assessed during physical 
measurements. The TSV approach failed to yield an independent neutral temperature  due to TSVs being 
extremely scattered, and the attempts made to incorporate regression in determining correlation between 
operative temperature and TSV failed ultimately. The PMV index gave a neutral temperature of 25.6 °C 
using regression and Griffith’s method yielding a mean temperature of 22.7 °C. 

This study investigates adaptive thermal comfort using the adaptive predicted mean vote (aPMV) 
model, validated through machine learning-based linear regression. The analysis incorporates parameters 
such as ambient temperature, relative humidity, air velocity, and CO₂ levels. Conducted from May 2023 
to February 2024 at the Pakistan Air Force (PAF) hospital in Islamabad. The study examines thermal 
comfort in sub-tropical climatic conditions using real-time data collected from medical wards, ICUs, and 
isolation wards. Thermal sensation, comfort levels, adaptive behaviors, and clothing insulation (CLO) 
were assessed through patient surveys, with a nominal CLO value of 0.5 assumed to represent typical 
hospital attire. The findings demonstrate that overcooling occurs when relative humidity exceeds 60% 
and operative temperatures drop below 22.0 °C, resulting in negative PMV values (−0.5 to −0.7) and 
increased PPD (Predicted Percentage of Dissatisfied) levels, while undercooling is observed at relative 
humidity below 55% and operative temperatures between 23.0–24.0 °C, yielding neutral PMV values 
(+0.2 to +0.4) and reduced PPD levels. These results emphasize the significance of adaptive HVAC 
controls in maintaining thermal comfort and recommend future research to integrate dynamic CLO 
variations for greater accuracy in comfort evaluations. 

3. Materials and Methods 
The study was conducted in Islamabad, which lies in the humid subtropical climate zone, having four 

seasons giving both dry, and humid composite climatic conditions. The field assessments were carried 
out during both summer and winter seasons in different male and female wards, intensive care units, 
isolation wards, and maternity wards of the Pakistan Air force Hospital located in Islamabad Capital 
Territory outlined in Figure 1.  

The study incorporated a valid sample size of 85 respondents including patients, doctors, nurses and 
hospital staff. The healthcare sector, including public and private hospitals in the Islamabad capital 
territory were contacted for field measurements and surveys. However, the scope of the study had been 
narrowed down to private hospitals owing to longer administrative approval processes in public hospitals. 
The field measurements time period spanned over the months of June 2023-August 2023 (summer 
climate), and December-February 2024 (winter climate). The consent of the hospital management was 
taken initially where the details and objectives of the study were discussed. After the approval, the 
Engineering and Maintenance department was contacted for the authorization of field measurements to 
be conducted in the hospital. The study was conducted in different hospital wards with each patient 
surveyed only once in a transverse or cross-sectional technique. 
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Figure 1. A Panoramic view of the Pakistan Air force Hospital, Islamabad. 

3.1. Experimental Setup 
Details of equipment used for thermal environmental measurements are outlined in Table 1. 

Table 1. Instruments and their specifications utilized in thermal comfort field assessments. 
Parameter Symbol Instrument Accuracy 
Indoor Air Velocity Va  TES 1341 Hot Wire Anemometer ± 2% 
Indoor Relative Humidity RHa  

HT 2000 HTI Digital CO2 / Temperature / 
RH Data Logger 

± 3% 
Indoor Air Temperature Ta  ± 0.6 ⁰C 
Indoor Carbon Dioxide 
Level CO2(air) ± 50 ppm 

Indoor Wet Bulb Globe 
Temperature Twbgt  AZ 8778 Handheld Wet Bulb Globe 

Temperature Meter ± 0.6 ⁰C 
Indoor Globe Temperature Tg  
Indoor Light Intensity Ilux  LT 505 EXTECH Light Meter ± 3% 

Wall Temperature Twall  
AS 530 Smart Sensor Infrared 
Thermometer ± 2% 

The sensors utilized during thermal comfort analysis were placed near the patient on a movable trolley 
with a standard height maintained at 1.2 m from ground level during patient’s sitting/reclining position 
on bed. The sensors were set to obtain thermal comfort measurements at a sampling rate of 1 s (1000 ms) 
and synchronized with the data logging software as shown in Figure 2a and b. Each sample set was set 
to a 10 min time interval of indoor environmental data recording, during which the thermal comfort 
surveys were distributed and filled as per patient’s preference. 
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(a) (b) 

Figure 2. (a) Equipment layout during field assessments placed parallel to patient bed (b) Data logging 
activated during thermal comfort field assessments. 

The real-time indoor environmental data obtained from the sensors was incorporated in the checklist 
as shown in Table 2. The checklist outlined the coordinates and dimensions where survey was taking 
place including the time of survey, floor no., ward type, room area, no. of occupants, current air 
conditioning state, duct temperature, wall surface temperatures.  

Table 2. Checklist outlining thermal comfort measurements during field assessments. 
Ward: 
Gynae  Floor 

5th 
Corridor Temperature (˚C) 

24.3  Weather 
Hot and Humid 

   

Close 
[0] 

Open 
[1] 

Semi 
[0.5] 

 Off [0] 
On [1] 

Surface Temp. 𝐓𝐓𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 
(˚C) 𝐕𝐕𝐚𝐚 𝐈𝐈𝐥𝐥𝐥𝐥𝐥𝐥 𝐓𝐓𝒂𝒂 𝐑𝐑𝐑𝐑𝐚𝐚 𝐓𝐓𝐠𝐠 𝐂𝐂𝐂𝐂𝟐𝟐(𝐚𝐚𝐚𝐚𝐚𝐚) 
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3.2. Thermal Comfort Survey 
The Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD) are evaluated using 

the Center for the Built Environment (CBE) Thermal Comfort Tool (Tartarinia, Schiavon, Cheung, & 
Hoyt, 2020). The thermal comfort parameters including PMV and PPD are evaluated using experimental 
real time datasets including indoor relative humidity and indoor operative temperature. The thermal 
comfort assessment surveys were designed considering the ASHRAE 55 and ISO 7730 thermal comfort 
standards. Table 3 outlines the main indicators used in assessing hospital occupants’ health, thermal and 
humidity preference, comfort, air flow vote (AV) and preference, and the thermal sensation vote (TSV). 
The TSV and AV scales of −3 to +3 were followed within the hospital setting, allowing for the 
categorization of occupants’ thermal sensation and air flow preference levels (−3, −2, −1, “0”, +1, +2, 
+3).  

Globe 
Sensor 

Hot wire 
Anemometer 

Infrared 
Thermal 
Gun 

RH and CO2 
Data Logger 

Data Logging 
(PC) 
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Table 3. Thermal comfort questionnaire survey scales.  

Scale 
Healt

h 
status 

Thermal 
sensatio
n vote 
(TSV) 

Thermal 
pref. 
(TP) 

Overall 
comfort 

(OC) 

Humidity 
feeling 

Humidity 
pref. 

Air flow 
vote 
(AV) 

Air 
flow 
pref. 

Air 
flow 

accept
. vote 

6    Highly 
comfortable      

5    Slightly 
Comfortable      

4 Well   Comfortable      

3 Fair Hot  Slightly 
uncomfortable 

Highly 
humid Highly dry Strong 

air flow   

2 Unwel
l Warm Considerabl

y cooler 
Uncomfortabl

e 
Moderatel
y humid 

Moderatel
y dry 

Moderate 
air flow 

Lowes
t air 
flow 

 

1 Sick Slightly 
Warm 

Slightly 
cooler 

Highly 
uncomfortable 

Slightly 
humid 

Slightly 
dry 

Weak air 
flow 

Lesser 
air 

flow 
Yes 

0  Normal No change  No change No change 
No 

moveme
nt 

No 
change  

−1  Slightly 
Cool 

Slightly 
warmer  Slightly 

dry 
Slightly 
moist  

Higher 
air 

flow 
No 

−2  Cool Considerabl
y warmer  Moderatel

y dry 
Moderatel

y moist  
Highes

t air 
flow 

 

−3  Cold   Highly dry Highly 
moist    

The experimental data including indoor thermal comfort environmental measurements were gathered 
using real-time data recording sensors whereas the thermal comfort questionnaires were simultaneously 
filled as per patient’s preference within the recording time interval of 10 min as shown in Figure 3. 

 
Figure 3. Questionnaire being filled with simultaneous real-time data-recording. 

4. Results and Discussion 
The Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD) are evaluated using 

the Center for the Built Environment (CBE) Thermal Comfort Tool (Tartarinia, Schiavon, Cheung, & 
Hoyt, 2020). The PMV and PPD parameters were estimated by incorporating experimental real time 
datasets including indoor relative humidity and indoor operative temperature. PMV is observed to 
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increase in a negative trend with values approaching −0.6 indicating the hospital’s HVAC chiller 
system’s overcooling, done to reduce the indoor temperature without impacting indoor relative humidity 
levels.  

A highest negative PMV of −0.6 observed at 60% relative humidity indicated in Figure 4a, which 
gradually increases to a maximum positive of +0.3 with an associated reduction in relative humidity level 
to approx. 50% indicating the undercooling of hospital’s HVAC system. The patients admitted in hospital 
wards had complained of lower set point temperatures resulting due to overcooling of the HVAC system 
as observed in Figure 4b where PMV falls to a negative of −0.6 at lowest indoor operating temperature 
of 20.0 °C. However, PMV is also observed to rise to approx. +0.3 with a gradual increase in indoor 
operating temperature to 23.0 °C indicating undercooling of the HVAC system. 

(a) (b) 
Figure 4. PMV vs Relative humidity (a), and PMV vs Operating temperature (b). 

The Predicted Percentage of Dissatisfied (PPD) levels indicate that patient dissatisfaction reached its 
peak, ranging between 12–13%, at the lowest operating temperatures (set point) of approximately 20.0 °C, 
as shown in Figure 5a. This dissatisfaction is attributed to overcooling by the HVAC system. Furthermore, 
the increased indoor humidity levels, estimated between 60–62% and exceeding the comfort range, 
exacerbate patient discomfort, as depicted in Figure 5b. Occupants in inpatient hospital wards reported 
discomfort when the central HVAC system, operating at peak load, supplied conditioned air at 
excessively low temperatures (16.0–18.0 °C), particularly during late-night hours. This discomfort is 
reflected in the higher PPD values at supply air temperatures below 20.0 °C. Additionally, the chiller 
system's air humidification process further elevated relative humidity levels within the hospital wards, 
with maximum RH levels exceeding 60–62%, contributing to overall dissatisfaction. 
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(a) (b) 

Figure 5. PPD vs. Relative humidity (a), and PPD vs operative temperature (b). 

The indoor air velocity parameter is observed to fluctuate within 0 to 0.5 m/s. An increase in air 
velocity enhances convective heat transfer from the human body and occupants’ including the inward 
patients which reduces Predicted Mean Vote (PMV) conforming to the findings reported in literature 
(Khalid, Zaki, Rijal, & Yakub, 2019). At higher airflow rates, the indoor air velocity reaches 0.3 to 0.5 
m/s, resulting in the lowest PMV values of approximately −0.6, indicative of the hospital’s HVAC system 
overcooling, as shown in Figure 6a. This overcooling reduces overall occupant satisfaction within the 
inpatient wards, as evidenced by elevated Predicted Percentage of Dissatisfied (PPD) levels, reaching 
11–13%, as shown in Figure 6b. The neutral point (0 PMV) is achieved at optimal air velocity levels 
between 0.1–0.2 m/s, during which PPD is at its lowest (7–8%). Conversely, when the indoor air velocity 
drops below 0.1 m/s, PMV values begin to rise, reaching a maximum of 0.3, indicating the HVAC 
system’s slight undercooling. However, this slight undercooling has minimal impact on PPD levels. 

(a) (b) 
Figure 6. Indoor Air Velocity vs PMV (a), and PPD (b). 

Hospital patients reported excessive overcooling within hospital wards indicated by the PMV 
following a negative trend approaching −0.6, indicating the overcooling of hospital’s HVAC chiller 
system, done to reduce the indoor temperature without impacting indoor relative humidity levels. This is 
reflected in the maximum plot scatter within the negative PMV range of −0.2 to −0.6, leading to an 
increase in PPD levels from 5.0% to 13.0%. The correlation between PMV and PPD, as shown in Figure 
7, further highlights that patient dissatisfaction remained minimal (0 to 0.4 PPD) when the HVAC system 
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was operating at slightly undercooled conditions with higher operative temperatures, suggesting better 
alignment with thermal comfort preferences under such circumstances. 

 
Figure 7. Graphical Comparison between PMV and PPD thermal comfort parameters. 

Linear regression statistical measures and performance metrics are outlined in Table 4 and Table 5 
respectively, including the correlations between PMV and Predicted PMV, PPD and Predicted PPD with 
the Ambient Air Temperature, Relative Humidity and Air Velocity Parameters. Error metrics including 
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and R² 
Score have been illustrated. A comparison is made between the statistical (ANOVA) and Regression 
Metrics (Python ML approach). 

Table 4. Linear regression coefficients and performance metrics illustrated considering PMV. 

Regression Statistics        

Multiple R 0.992267        

R Square 0.984593        
Adjusted R 
Square 0.984577        
Standard 
Error 0.022378        

Observations 3914        

         
Linear Regression 

(ANOVA)  
Linear Regression ML Model 

(Python) 

  df SS MS F 
Significan

ce F  
Mean Absolute Error 
(MAE) 0.017312 

Regression 4 
125.101

4 
31.27
536 

62452
.44 0  

Mean Squared Error 
(MSE) 0.000473 

Residual 3909 
1.95757

6 
0.000
501    

Root Mean Squared 
Error (RMSE) 0.021747 

Total 3913 127.059     R² Score 0.984207 

         

  
Coefficien

ts 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% Lower 95.0% 

Upper 
95.0% 

Intercept −4.85696 0.05151 

-
94.29

19 0 −4.95795 
-

4.75598 -4.95795 
−4.7559

8 

ta 0.125283 
0.00168

1 
74.55
022 0 0.121988 

0.12857
8 0.121988 0.128578 

tr 0.089592 
0.00112

4 
79.72
415 0 0.087389 

0.09179
5 0.087389 0.091795 

vel -1.64332 
0.00587

6 
−279.
666 0 −1.65484 

−1.631
8 −1.65484 -1.6318 

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

-0.6 -0.4 -0.2 0 0.2 0.4

PP
D

 (%
)

PMV
PMV vs PPD
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rh 0.00616 
0.00042

5 
14.50

74 
1.72E

-46 0.005327 
0.00699

2 0.005327 0.006992 

Table 5. Linear regression coefficients and performance metrics illustrated considering PPD. 
Linear Regression Metrics        

Multiple R 0.828886        

R Square 0.687053        

Adjusted R 
Square 0.686733        

Standard Error 0.686387        

Observations 3914        

Linear Regression  
(ANOVA) 

 Linear Regression ML Model 
(Python) 

 df SS MS F Signific.  
F 

 Mean Absolute 
Error (MAE) 0.505968 

Regression 4 4043.19
8 

1010
.799 

2145.
488 0  Mean Squared Error 

(MSE) 0.473603 

Residual 3909 1841.63
9 

0.47
1128 

   Root Mean Squared 
Error (RMSE) 0.688188 

Total 3913 5884.83
7 

    R² Score 0.714859 

         

 Coefficien
ts 

Standard 
Error 

t 
Stat 

P-
value 

Lower 
95% Upper 95% Lower 95.0% Upper 

95.0% 

Intercept 38.648655
6 

1.57991
4 

24.4
6251 

4.3E-
123 

35.5511
2273 41.74618848 35.55112 41.74619 

ta 0.3289056
13 

0.05154
5 

6.38
0958 

1.97E
-10 

0.22784
8238 0.429962988 0.227848 0.429963 

tr −1.52905
4321 

0.03446
9 

−44.
3608 

0 −1.5966
32442 −1.4614762 −1.59663 −1.4614

8 

vel 13.360564
12 

0.18022
9 

74.1
3103 0 13.0072

1228 13.71391595 13.00721 13.71392 

rh −0.14128
1787 

0.01302
3 

−10.
8484 

4.91E
-27 

−0.1668
14968 

−0.1157486
05 −0.16681 −0.1157

5 

Linear regression predictive modeling, utilizing machine learning, revealed key correlations between 
the PMV index, operative temperature, and relative humidity. As shown in Figure 8a, maintaining an 
indoor temperature of 23.0–24.0 °C alongside relative humidity levels between 50–55% results in a PMV 
index range of +0.2 to +0.4, indicative of slight undercooling and optimal thermal comfort for hospital 
occupants. This observation underscores the significance of balanced indoor temperature and humidity 
control in meeting thermal comfort standards. However, overcooling occurs when supply air 
temperatures drop below 22.0 °C, as the HVAC system reduces operative temperatures without 
adequately addressing indoor humidity levels. This limitation arises from the system's lack of an 
integrated dehumidification mechanism, which hinders its ability to maintain appropriate humidity levels. 

Figure 8b outlines that relative humidity levels below 55% are associated with positive PMV values, 
reflecting effective thermal regulation under slightly undercooled conditions. In contrast, as relative 
humidity exceeds 60%, resulting from the saturation of the chiller system at lower setpoint temperatures, 
PMV values shift into negative ranges, signifying overcooling and increased occupant discomfort. These 
findings reveal that the hospital’s HVAC system prioritizes temperature reduction at the expense of 
humidity control, exacerbating thermal discomfort. Incorporating a dehumidification system would 
address this shortcoming, allowing for better regulation of both temperature and humidity to enhance 
thermal comfort within hospital environments 
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(a) (b) 

Figure 8. Linear regression predictive analysis, PMV vs Ambient temperature (a), and Relative 
humidity (b). 

The predicted PMV levels attained through the linear regression model, in conjunction with indoor 
air velocity parameters, align with the initial estimation of PMV’s correlation with indoor operating 
temperature and relative humidity. As illustrated in Figure 9a, PMV levels follow a negative trend, 
decreasing from −0.1 to −0.7 as indoor air velocity increases. This trend reflects the enhanced throttling 
of indoor air supply within the hospital’s HVAC duct system at higher velocities, which causes a drop in 
indoor air temperature and results in overcooling. This is confirmed by highly negative PMV ranges 
(−0.5 to −0.6) observed at maximum indoor air velocity levels (0.3 to 0.5 m/s). The system’s inability to 
regulate air temperature effectively under high velocity conditions highlights a design limitation that 
aggravates thermal discomfort for occupants. 

Conversely, as indoor air velocity decreases below 0.1 m/s, the predictive analysis indicates system 
exhibiting slight undercooling/overcooling within nominal PMV ranges of −0.3 to +0.3. However, an 
increase beyond 0.2 m/s consistently results in undercooling, with PMV values reaching as low as -0.6. 
Figure 9b shows that patient dissatisfaction, as indicated by PPD levels, intensifies with increasing indoor 
air velocity. Within the 0.1 to 0.2 m/s velocity range, PPD levels remain between 5.5–7.5%, suggesting 
a relatively low proportion of dissatisfied occupants. However, at velocities exceeding 0.3 m/s, 
dissatisfaction rises significantly, with PPD levels reaching their peak at 11%. This increase reflects the 
direct impact of overcooling caused by excessive air velocity, emphasizing the need for improved air 
velocity control within the HVAC system to mitigate patient discomfort. 

 
 

(a) (b) 
Figure 9. Linear regression predictive analysis, Indoor Air Velocity vs. PMV vs. (a), and PPD (b). 
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5. Conclusion 
The research demonstrates the applicability of an adaptive thermal comfort regression model in 

evaluating thermal comfort conditions in the PAF Hospital, Islamabad, under hot and humid climate 
conditions. The analysis of indoor environmental parameters, coupled with thermal preference and 
sensation surveys conducted within the in-patient medical wards, identified optimal thermal comfort 
ranges: indoor temperatures of 22.0–23.0 °C, relative humidity levels between 50–55%, and air 
velocities from 0.1–0.2 m/s. These conditions were found to enhance the PMV index and reduce 
PPD levels, ensuring improved occupant satisfaction. The study employed a predictive linear 
regression model and validated the PMV index using the CBE Thermal Comfort Tool, providing a 
robust framework for estimating adaptive PMV indices and optimizing indoor thermal conditions. 

Despite its contributions, the study is limited by the assumption of utilizing nominal CLO ranges  
for hospital occupants, which may not account for variations in clothing insulation among different 
patients. Future research should incorporate dynamic CLO variations to improve the precision of 
comfort predictions. Additionally, the absence of a dedicated dehumidification system in the 
hospital HVAC setup emerged as a key factor affecting overcooling and undercooling, as indicated 
by the correlation between PMV, PPD, and relative humidity. It is recommended that adaptive 
HVAC systems be implemented, with integrated humidity control mechanisms to mitigate these 
effects. 

To further enhance the utility of this research, future studies should investigate seasonal 
variations, incorporate larger and more diverse patient populations, and explore advanced Machine 
Learning (ML) and Deep Learning (DL) models for predictive thermal comfort analysis. Such 
efforts would help develop more comprehensive guidelines for Hospital HVAC systems, ensuring 
optimal thermal comfort across diverse climates and patient demographics. 
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