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Abstract: BACKGROUND AND OBJECTIVES: Urbanization leads to increased building construction, forming 
Urban Heat Island (UHI). UHI causes heat accumulation in urban areas, making it difficult to ventilate the area. This 
study aims to analyze Land Surface Temperatures (LST) using Remote Sensing (RS) data to predict UHI 
development in urban localities in Chiang Mai, Thailand. The study aims to compare the performance of different 
machine learning (ML) algorithms in predicting LST and assess their potential for future use in mitigating UHI 
consequences in urban areas. METHODS: RS data from Landsat 8 and Sentinel-2 satellites were used to analyze 
LST from 2016 to 2022. Five different ML algorithms were employed in this study: Random Forest (RF), AdaBoost 
Regressor (ABR), Artificial Neural Network (ANN), Linear Regression (LR), and Gradient Boosting (GB). The 
performance of these algorithms was evaluated using statistical variables. FINDINGS: The study found that the RF 
model had the highest precision in predicting LST, with the lowest Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE) values among the models. However, all models had relatively low R-squared (R2)values, 
indicating room for developing the accuracy of the predictions. CONCLUSION: The study demonstrates the 
feasibility of using RS data and ML algorithms to predict LST and comprehend UHI development in urban localities. 
The study also emphasizes the importance of using ML techniques to address UHI consequences in urban areas and 
can apply these data to urban planning to promote sustainable urban development. Further investigation is necessary 
to improve the accuracy of the models and determine effective strategies to mitigate UHI effects in urban areas. 
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1. Introduction 
The growth of urban regions has resulted in multiple difficulties, one of which is the UHI 

phenomenon. UHI pertains to the rise in temperature in urban areas compared to the adjacent rural áreas 
(Almeida et al., 2021), brought about by heat accumulation on building surfaces due to inadequate 
ventilation and lack of green spaces (Zhang et al., 2022). The UHI phenomenon has direct and indirect 
consequences on the urban populace, including amplified energy consumption for cooling (Fan et al., 
2022), reduced comfort levels outside buildings, and inferior air quality. LST has been recognized as a 
vital functional variable in evaluating the incidence of UHI in urban areas (Avdan and Jovanovska, 2016; 
Tomlinson et al., 2011). LST parameters can be procured from diverse sources, such as ground sensors 
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and satellite images furnished with thermal sensors like MODIS and Landsat 8 (Tomlinson et al., 2011). 
Nevertheless, these satellites possess relatively low resolution, and thus, the employment of satellites 
without thermal sensors like Sentinel-2, with more excellent image resolution, has become increasingly 
favored. This article presents a pattern for projecting LST via data procured from the RS process with 
the RF algorithm, a type of ML. The study region handpicked for this exploration is Chiang Mai, Thailand, 
where the UHI phenomenon is widespread due to the city's rapid expansión (Sangnum et al., 2014). The 
research aims to forecast the future of LST in the study area and provide insights into the UHI 
phenomenon's impact on urban areas. The results of this article can facilitate urban planning, weather 
forecasting, and formulating strategies for mitigating the UHI effects on urban areas. The utilization of 
RS data and ML algorithms in projecting LST can assist in comprehending the UHI phenomenon better 
and developing practical solutions to alleviate its effects. 

The study area is the city of Chiang Mai, Thailand (Figure 1). Chiang Mai is the largest city in 
northern Thailand, located at 18.788 degrees North and longitude 98.986 degrees East, with a total area 
of approximately 431.46 km2. The site has a tropical savanna climate (Srivanit and Iamtrakul, 2019), and 
research has shown that Chiang Mai is experiencing a UHI effect. From 2000 to 2006, the average 
temperature in the city increased from 20.52 ± 1.05 ℃ to 28.08 ± 1.50 °C (Srivanit and Hokao, 2012). 
In 2014, another analysis of the UHI effect in Chiang Mai found that the UHI value in the city can reach 
up to 4.35 °C during the hot season (Srivanit and Auttarat, 2016). 

Figure 1. Geographical location of research area Chiang Mai, Thailand (by author). 

2. Literature Review  
2.1. Urban Heat Island 

It is a phenomenon that urban areas have more heat than outer metropolitan areas, which is a problem 
that has been spread in many places over the past several decades. This phenomenon from the study is 
divided into 2 periods: 1. Daytime and 2. Night time (Zhou et al., 2011) As shown in Figure 2, finding 
an area in the city where UHI occurs will inevitably result in higher heat and, consequently, higher 
building energy consumption. According to the studies of heat islands in Thailand, a study in Bangkok 
province revealed that UHI directly impacts energy consumption in mining areas (Arifwidodo and 
Chandrasiri, 2015). On the other hand, in a cold country, the UHI effect can save up to 4.5 kWh/m2 in 
heating costs (Boudali Errebai et al., 2022). In terms of the size of the urban area, it affects the UHI by 
increasing the size of the city, resulting in a higher UHI by the log-linear equation (Imhoff et al., 2010). 
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Figure 2. shows the temperature difference within the city and outside the town divided into periods. 
day and night (Almeida et al., 2021). 

Moreover, other UHI impacts exist in China, where many different climate zones (Geng et al., 2023; 
Stewart and Oke, 2012). Regarding the phenomenon of UHI shift in Thailand, a study has been conducted 
on the timing of the seasons that affect the UHI phenomenon. It was found that UHI is the lowest in the 
Rainy Season and returns to the highest In the dry season (Jongtanom et al., 2011). To know the main 
factors that affect UHI, there is research that will help find ways to reduce the impact of UHI, increasing 
green areas or designing a city plan to be more suitable for the site In the case of increasing the green 
space in Chiang Mai, Thailand, it was found that the green area of 60.15 rai can distribute cool air within 
a radius of 75–100 m. at the same time, the size of 12.42 rai can distribute cool air within a radius 25–75 
m (Nantarat et al., 2021). 

2.2. Land Surface Temperature 
The research findings indicate that Land Use Land Cover (LULC) impacts LST. (Zhou et al., 2011). 

Various tools are used to study LST, including utilizing data from the Meteorological Department, 
collecting ground-based data, and using RS with thermal sensors. The data format is typically divided 
into two main groups: daytime and nighttime. The choice of use depends on the suitability of the study 
area, the desired level of detail of the data, and access to historical data. One easily accessible source of 
historical data is RS from satellites. One method for calculating LST using imagery data from Lansat8 is 
shown in Table 1. 

Table 1. shows the calculation process of LST from Landsat 8 satellite data. 
Detail Equation No. of 

Equation 
Convert digital number, 
DN, to radiance value 

TOA = M𝐿𝐿 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶 + AL (1) 

Convert radiance value to 
temperature value BT =

K2

ln(� K1
TOA�+ 1)

 (2) 

Convert Kelvin unit to 
Celsius unit. 
 

T𝑐𝑐 = BT− 273 (3) 

Calculate NDVI 
NDVI =

(NIR− RED)
(NIR + RED)

 
(4) 
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Calculate the proportion of 
vegetation (PV) PV = �

(NDVI− NDVImin)
(NDVImax − NDVImin)

 
(5) 

Calculate the Emission ε =  0.004 ×  P𝑣𝑣  +  0.986 (6) 

Calculate LST LST 

=  
BT 

(1 + (0.00115 ×  BT  
1.4388) ×  ln(ε))

 

(7) 

Adapt from (Jiang and Tian, 2010; Peng et al., 2018; Sherafati et al., 2013) 

Which 

ε Emissivity 
AL Band-specific additive rescaling factor from the metadata, the band (10) = 0.1 
BT Surface temperature in kelvin  
K1 774.89 (Band-specific thermal conversion constant from the metadata) 
K2 132.08 (Band-specific thermal conversion constant from the metadata) 
ML Band-specific multiplicative rescaling factor from the metadata, the band (10) = 3.3420E-04 
P𝑣𝑣 The proportion of vegetation 
QCal Quantized and calibrated standard product pixel value (DN) 
TC Surface temperature in celcius 
TOA Top of Atmosphere  radiance in (Watts/square meter*srad*um)) 

2.3. The Variables Affecting LST  
This search method of relevant research papers shown in Figure 3 Used the keywords "Land surface 

temperature" and "Prediction" in the Scopus database, and 73 accessible articles were found. Then, they 
screened the groups not interested in LST prediction, such as water evaporation, downscale aerial 
photographs, soil moisture, crop predictions, and insects. They resulted in 34 articles that mentioned 
predictions. LST, from screening variables shared more than 5 times, can be summarized in Table 2. 

 
Figure 3. shows the process of identifying variables that affect LST (by author). 

Table 2. Variable from review journal. 
Variable from 
Satellite 

Description NO. of Publications That 
Mentioned The Variable 

NDWI Normalized Difference Water 5 
EVI Enhanced Vegetation Index 5 
Lat Latitude 6 
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Long Longitude 6 
Elevation Elevation 6 
LULC Land Use Land Cover 10 
NDBI Normalized Difference Built-up Index 12 
NDVI Normalized Difference Vegetation 19 
LST Land surface Temperature 34 

Latitude, Longitude 

Latitude is a coordinate that indicates a position on the Earth's surface, with values ranging from 0-
90 degrees for North or south. On the other hand, longitude is a coordinate used to indicate a position on 
the Earth's surface in the west or east direction, with values ranging from 0–180 degrees. In the example 
of the study area, the center of Chiang Mai province is located at the latitude and longitude coordinates 
of 18.796143 and 98.979263, respectively. The direct benefit of using latitude and longitude is accurately 
determining the sample point's position (Bartesaghi-Koc et al., 2022; Kafy et al., 2022; Mohammad and 
Goswami, 2022). 

2.3.1. Normalized Difference Built-Up Index (NDBI) 
The NDBI is a variable that can be calculated in various ways from RS studies and indicates the map 

of built-up areas in urban environments. The calculation of NDBI varies for each satellite, as shown in 
Equation 8. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1−𝑁𝑁𝑁𝑁𝑁𝑁)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑁𝑁𝑁𝑁𝑁𝑁)

 
(8) 

 
NDBI is widely used as a variable for urban planning and LULC mapping. Its data range is from −1 

to 1 and can be divided into two groups: built-up and non-built-up. Regenerate response (AlDousari et 
al., 2022). Non-built-up refers to areas that are not developed or constructed, such as natural areas, 
farmland, or vacant land. Studies have used NDBI as a variable to assess LST, which reveals that a high 
NDBI variable impacts increasing LST (Gao et al., 2022; Kafy et al., 2021; Mushore et al., 2017). 

2.3.2. Normalized Difference Water (NDWI) 
It is a variable that describes the presence of water bodies from RS, which can be calculated using 

equation 9. It is widely used in LST prediction, as an increase in the water surface area has a cooling 
effect, resulting in a decrease in LST. The data range is between −1 and 1, divided into two groups: water 
and non-water features in satellite or aerial imagery(Gao et al., 2022; Mushore et al., 2022; Mushore et 
al., 2017). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1)

 
(9) 

2.3.3. Normalized Difference Vegetation (NDVI) 
It is an essential variable to consider when reviewing all 34 articles. The NDVI variable was used in 

19 (55.88%) of the articles, and it can be calculated using equation 4, which is one of the variables used 
to calculate LST directly. The NDVI value ranges from −1 to 1, where higher values indicate greater 
vegetation density. It is commonly used to monitor land cover, agriculture, and natural changes 
(AlDousari et al., 2022; Karimi et al., 2021). 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)

 
(10) 

2.3.4. Enhanced Vegetation Index (EVI) 
The EVI variable is a variable that is computed from MODIS satellite imagery, which is calculated 

from the red, blue, and near-infrared frequency ranges. This variable is commonly used with MODIS 
satellite imagery (Mushore et al., 2022). Studies have compared the accuracy of predicting natural 
vegetation coverage using NDVI and EVI in the MODIS satellite imagery frequency range. These studies 
have shown that using NDVI for prediction yields greater accuracy than EVI (Alademomi et al., 2020; 
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Li et al., 2010).Translation: The Standardized Precipitation Index (SPI) was also tested, and the results 
of both variables differed by only 5% (Farrokhzadeh et al., 2018). As a result, in this research, NDVI 
was chosen as a representative variable for model development. 

2.3.5. Land Use Land Cover 
LULC, The study has divided the samples into four groups: 1. Buildings (residential, commercial, 

and industrial); 2. Water surfaces (rivers, lakes, and others); 3. Green land (trees, parks, grasslands, and 
other vegetation); and 4. Agricultural areas (arable land, vacant land, sand, and bare lands) (Gao et al., 
2022).  

The Digital Elevation Model (DEM) digitally portrays a land surface's topography or elevation. It is 
a 3D model that showcases the height of distinct points on the Earth's surface concerning sea level. DEM 
information is generally obtained from satellite or airborne images and is frequently utilized in various 
applications such as land analysis, hydrological simulation, and ecological surveillance. 

2.4. Satellite Imagery  
The satellite image represents the surface or different parts of the Earth. The imagery is captured 

using cameras mounted on satellites, each with additional imaging capabilities, as shown in Figure 4. 
These images can be grouped into two main categories: publicly available and commercial, which can 
be clearly distinguished based on image resolution and repeat time. The usage of these images can vary 
depending on the user, such as environmental monitoring (Skelhorn et al., 2016), weather forecasting 
(Nayak and Ghosh, 2013; Skelhorn et al., 2016), urban planning (Imhoff et al., 2010) agriculture (Allen 
et al., 2011; Nguyen et al., 2020) and even in disaster management systems. The satellite images are 
collected in various wavelengths ranging from visible light to microwave.  

 
Figure 4. Timeline of public and commercial satellites (Turner et al., 2021). 
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Table 3. Popular satellites are used in part of UHI. 
Thermal Sensor Satellite Orbital 

Frequency 
Data Available 

ASTER Terra 2 days 1999 
MODIS Terra 2 days 1999 
MODIS Aqua 2 days 2002 
TIRS Landsat 8  16 days 2013 
TIRS 2 Landsat 9 16 days 2021 
- Sentinel-2 5 days 2015 

(Adapted from (Shih et al., 2019; Xu et al., 2017; Zhou et al., 2019)) 

Table 3 shows the differences between each sensor used for measurement and their ability to access 
the satellite's historical data. Each satellite is often used for further data analysis. For example, Sensor 
MODIS, which has sample cases in China, analyzes UHI with 253 Chinese cities and 5 climate zones 
(Geng et al., 2023). Moreover, images taken from Sensor MODIS are also used for urban planning and 
improving the settlement's environment (Xu et al., 2021). The base of the analysis is quite broad due to 
the detail of the MODIS images, which are at 1 km. The next group is the Landsat, starting from Landsat 
4 to the current Landsat 9, which has continuously improved its sensors. Currently, two sensors, TIRS 
and TIRS2, are widely used and obtained from Landsat 8 and 9. Landsat 8 is widely used due to its data 
from 2013, which is ten years old and suitable for predicting various data. Landsat 8 because it is an RS 
satellite that provides high-resolution images of the Earth's surface. The images captured by Landsat 8 
have a resolution of 30 meters for the visible, near-infrared, short-wave infrared, and thermal infrared 
bands, making it useful for a wide range, including LULC mapping (Jamali, 2019; Jiang and Tian, 2010; 
Yu et al., 2019), Agricultural monitoring (Dhillon et al., 2022), Natural Resource Management (Singh et 
al., 2021), Climate change monitoring (Hashim et al., 2019) and UHI (Almeida et al., 2021). Landsat 
eight images are also often used with other data sources, such as reference data, to support various 
scientific research and analytical purposes. The satellite's coverage and long-term imagery archive make 
it a valuable resource for researchers in multiple fields. The limitations of Landsat 9 are that it is a newly 
launched satellite, meaning the amount of data or the number of satellite images for the data still needs 
to be increased, resulting in a limited ability to predict. Some case studies in LST analysis in China have 
used data from 2010 to 2019. Using a more extended range of data in data analysis is necessary (Almeida 
et al., 2021; Xu et al., 2021). 

2.4.1. Landsat 8 Satellite  
Landsat Satellite: The Landsat program is a series of Earth observation satellites operated by the 

United States Geological Survey (USGS) that began in 1972. Satellites carry instruments that capture 
images of the Earth's surface in various wavelengths, which are used for multiple applications such as 
LULC mapping and natural disaster response. One of the most important contributions of the Landsat 
program is the creation of a long-term record of the Earth's surface changes. The Landsat data archive is 
available to the public free of charge and is widely used by researchers, policymakers, and others 
worldwide. The newest Landsat satellite, Landsat 9, was launched in September 2021 and continues to 
provide essential information for managing the Earth's resources. 

2.4.2. Sentinel-2 Satellite  
Sentinel-2 is a satellite that will record the sun's reflection data from the Earth's surface to examine 

land and sea surfaces. The satellite will capture satellite images every 5–7 days, with the highest 
resolution being 10 m. and the lowest solution being 60 m. The data can be accessed through Freely 
available satellite products, specifically from the Sentinel-2 satellite, which has been open since 2015. 
However, this satellite does not have a thermal sensor, but it can still be used to calculate the NDVI, 
which is the main factor used in calculating LST. In this research, the Sentinel-2 satellite, which has the 
highest image resolution, was chosen in conjunction with the Landsat 8 satellite, which has a thermal 
sensor installed. Data from both satellites were prepared for further ML processing. 

2.4.3. The Program Used to Manage Satellite Images 
GIS Application: Most of the geographic information in the field of geography is in map format. The 

GIS program collects and analyzes data to present it in a more easily understandable format (Siddiqui et 
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al., 2012)—for example, the programs Esri's ArcGIS and open-source QGIS. ArcGIS is a GIS program 
used for mapping and working in the raphe, developed by the company "Environmental Systems 
Research.” (Khan and Mohiuddin, 2018). On the other hand, the program QGIS has the full name 
Quantum Geographic Information System and was developed in Germany. This program was designed 
in an open-source format, allowing users to use, improve or develop plugins. It is difficult to say which 
software is better, but in terms of cost, it is advisable to use the QGIS program (Khan & Aaqib, 2017). 
The literature review found that GIS is used for various types of analysis, including mapping and 
analyzing temperature using aerial photographs. It is also used to identify the urban area pattern for 
evaluating the impact of UHI and to study variables that affect the occurrence of heat islands (Jiang & 
Tian, 2010; Xu et al., 2021). The European example demonstrates that GIS divides cities into three groups 
(Kasanko et al., 2006).UHI is predicted by referencing the city’s expansion using aerial photographs 
(Mitraka et al., 2015). In addition to using GIS, ENVI-met software is also applied to assist in analyzing 
changes in outdoor comfort. It helps to visualize the airflow direction and temperature changes in urban 
areas (Wang et al., 2016). 

2.5. Prediction Method 
The predictive model is divided into two major groups: LR and non-LR. In the process of LR, there 

are limitations in terms of variable correlations. In the process of RS, non-LR is commonly used, which 
provides greater accuracy. An example of a non-LR model is the RF (Liu et al., 2022), ANN (Mohammad 
et al., 2022), GBR (Zhang et al., 2022), and ABR. In the example mentioned, RF is widely used due to 
its ability to handle complex variables and provide greater accuracy. It has been accepted that RF can 
accurately predict NDVI (Ma et al., 2021). In Brazil, RF has been used to predict soybean yield 
(Schwalbert et al., 2020). RF algorithm is an ensemble learning technique that builds multiple decision 
trees and aggregates their outputs to generate the final prediction. The algorithm randomly selects subsets 
of features and data points during tree-building to create diverse trees. The results of each tree are then 
combined to make the final prediction. This algorithm is renowned for its exceptional accuracy and 
ability to resist overfitting (Breiman, 2001; Cutler et al., 2007). ABR is a boosting algorithm that 
combines multiple weak learners to generate the final prediction. The algorithm trains multiple models 
iteratively by adjusting the weights of the training examples based on the previous model's error. This 
algorithm typically uses decision trees with shallow depths as weak learners. The ultimate forecast is the 
combined total of the at-risk students' results. This algorithm is widely appreciated for its ability to handle 
noisy data and deliver high accuracy (Chen and Guestrin, 2016). ANN is a class of algorithms that takes 
inspiration from the structure and function of the human brain. ANNs use interconnected nodes (neurons) 
to model complex relationships between input and output variables. During the training process, the 
algorithm adjusts the weights of the connections between the neurons to minimize the error between the 
predicted and actual values. ANNs are known for their ability to model non-linear relationships and 
handle large datasets (Goodfellow et al., 2016). LR is a straightforward algorithm that models the linear 
association between input and output variables. It assumes a linear relationship between the variables 
and attempts to find the best-fit line that minimizes the error between the predicted and actual values. 
The algorithm uses a closed-form solution to calculate the coefficients of the bar that best fits the data. 
This algorithm is famous for its simplicity and interpretability (Montgomery et al., 2021). GBR is another 
boosting algorithm that combines multiple weak learners to generate the final prediction. It is similar to 
ABR, but it uses a different strategy to adjust the weights of the training examples. Instead of modifying 
the importance of the criteria, it tries to fit the residuals of the previous model with a new model. The 
final prediction is the weighted sum of the weak learners' outputs. This algorithm is famous for its high 
accuracy and ability to handle complex relationships between variables (Friedman, 2001). The evaluation 
and assessment of ML models use four statistical variables: MAE, MSE (Mean Squared Error), RMSE, 
and R2. The MAE denotes the mean absolute deviation between the anticipated and actual values. The 
model's performance is enhanced with a lesser MAE. The MSE indicates the mean squared deviation 
between the predicted and actual values. The model's performance is enhanced with a lesser MSE. The 
RMSE is the square root of the MSE and is also employed to assess the model's performance. The model's 
performance is enhanced with a lesser RMSE. R2 calculates the percentage of variation in the dependent 
variable LST, which is clarified by the independent variables. R2 ranges from 0 to 1; higher values denote 
better model performance (Magistrali et al., 2021). 

This study aimed to analyze LST using RS data to predict LST in urban areas of Chiang Mai Province, 
Thailand. Its goal was to learn different machines for predicting LST in urban areas from 2016 to 2022. 
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3. Materials and Methods 
3.1. Preparation of the Image 

From a literature review, the research methodology can be summarized as shown in Figure 5. The 
Images obtained from satellites must undergo preprocessing, which involves image correction to reduce 
data distortion, noise, and geometric distortion that may occur during image capture. The differences in 
preprocessing methods can be explained in Figure 6. Each satellite has its preprocessing plans. Landsat 
8 Level 2 satellite images preprocessed from Earth Explorer will be used in this research. On the other 
hand, Sentinel-2 satellite images are divided into two groups: the first group is the data from 2016, which 
has yet to be preprocessed and, therefore, needs to undergo preprocessing by the researchers. The other 
group is the data from 2017–2021, which can be selected to use preprocessed data. 

 
Figure 5. Flowchart of research methodology (by author). 

In the preprocessing of Sentinel-2 satellite imagery, a tool called Sen2Core is used, and the Python 
Scripts are accessed through the Command Prompt. The process involves accessing the Sen2Core folder 
and initiating the process by specifying the location of the Sentinel-2 satellite imagery files. Once the 
process is complete, the preprocessed satellite imagery data can be used for further research. Landsat 8, 
In RS satellite images, is a crucial data source. The Earth Explorer website is used to obtain these images, 
which involves a few steps. First, the study area is selected, followed by the date and time range for the 
study. In addition, the cloud cover is limited to no more than 5% to ensure the lowest possible percentage 
of clouds. Next, the data sets are selected, with the research utilizing Landsat 8 Collection 2 Level-2 
satellite imagery. Finally, Band10 data is chosen from the available bands for use in the study. Sentinel-
2: For the satellite imagery of Sentinel-2, data will be obtained from the Copernicus Open Access Hub, 
which provides open access to aerial imagery from the Sentinel-2 satellite. The process for obtaining 
aerial imagery involves selecting the study area, choosing a date and time range, selecting the Sentinel-
2 satellite, and selecting images as close as possible to the images obtained from Landsat 8 to match the 
days. 
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3.2. Processing Image in QGIS 
Once the satellite images have been acquired, the next step is to process them using QGIS, a 

powerful open-source Geographic Information System (GIS) software that allows users to 
manipulate and analyze spatial data. This study will employ QGIS to organize layer data. The initial 
step in the processing of satellite images involves the organization of the layer data. This procedure 
entails overlaying the satellite images onto preexisting map layers to create a composite image with 
all the necessary information. The layer data may include land cover, topography, and other 
environmental variables that can affect LST. Through layer overlap, researchers can better 
understand the spatial correlation between LST and various other environmental factors. Generate 
sampling coordinates for CSV data. After organizing the layer data, the next step is to extract 
sampling points from the composite image to obtain a CSV data file. Sampling entails the process 
of choosing particular positions on the image and documenting the corresponding LST value. The 
sample points are then exported to a CSV file, which can be used to train the ML models. Before 
training the machine learning models, it is necessary to preprocess the CSV file. This procedure 
eradicates any missing data, outliers, or errors that may have an adverse effect on the accuracy of 
the model. Data preprocessing involves the process of scaling and normalizing the data to ensure 
that all variables are standardized and have the same scale. Following the completion of data 
preprocessing, the subsequent task involves selecting the most relevant features to train the machine 
learning models. This procedure entails identifying the variables that substantially impact LST and 
eliminating any superfluous or inconsequential characteristics. 

 
Figure 6. compares the differences between preprocessing files (a) and (c), which have not undergone 
the process, and (b) and (d), which have undergone the procedure. (Zhang et al., 2014). 
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3.3. Create Model Prediction ML 
ML is utilized to construct predictive models. It entails the creation of code utilizing preexisting 

algorithms. The programming language chosen for this research will be Python. Utilizing the Spider 
(Anaconda) platform for software development. The data is imported from QGIS as a .CSV file, 
with the variables categorized into two groups: the independent variable X and the dependent 
variable Y. The data is subsequently partitioned into training and testing datasets in a 70:30 ratio to 
facilitate the modeling process. Ultimately, the data is transmitted to machine learning algorithms. 
The literature review indicates that the RF, ABR, ANN, GBR, and LR algorithms are the most 
commonly employed in this research. The code will be implemented using the Spyder software 
bundled with Anaconda. The code will be implemented in Python, with the approximation 
parameter set to 100 and the random state parameter set to 42. These values are commonly employed 
for prediction purposes. 

4. Results and Discussion 
4.1. Collect the Image  

The selection of aerial images is based on the minimum percentage of cloud cover, which falls from 
0 to 5%. The research initially chose images from Landsat 8 and subsequently opted for images from 
Sentinel-2 because Landsat has a longer repeat cycle. The time period for 8 is 17 days, whereas Sentinel-
2 has a greater frequency. It enables a broader range of images to be chosen. Table 4 presents exemplars 
of the datasets gathered for the variables employed in this study. The comprehensive overview can be 
briefly presented in Table 5, which displays the date disparities. This research period has the most 
imminent date. However, there were instances when images could not be matched due to excessive cloud 
cover. Typically, the duration will range from 1 to 3 days, but certain images like Landsat 8 on 
09/03/2016 and Sentinel-2 on 26/03/2016 will be discernible images from distinct periods. Many of 
These issues arose due to an excessive amount of cloud cover. 

Table 4. Data sources and descriptions. 
Types Description Data sources 
RS data Landsat 8 OLI/TIRS (L2 

Cloud cover <5%) 
Earthexplorer.usgs.gov 

Sentinel-2 S2A, S2B 
(The date is close to Landsat 
8) 

sci-hub.Copernicus. eu 

Digital Elevation Model 
Chiang Mai Area (2015) 

GISTDA 

LCLU Land Cover Land Use Chain 
Mai area 

Digitization in QGIS 

Table 5. The Summary of satellite imagery. 
Landsat 8 Images Sentinel-2 
Image date Scene Identifier (Band 10) Image date Scene Identifier (MA, MB, NA, NB) 
09/03/2016 LC08_L2SP_131047_20160309 26/03/2016 S2A_MSIL1C_N0201_R104_T47Q  
12/05/2016 LC08_L2SP_131047_20160309 25/04/2016 S2A_MSIL1C_N0201_R104_T47Q  
12/05/2016 LC08_L2SP_131047_20160309 05/05/2016 S2A_MSIL1C_N0202_R104_T47Q  
08/02/2017 LC08_L2SP_131047_20170208 09/02/2017 S2A_MSIL1C_N0204_R104_T47Q  
12/03/2017 LC08_L2SP_131047_20170312 11/03/2017 S2A_MSIL1C_N0204_R104_T47Q  
25/12/2017 LC08_L2SP_131047_20171225 21/12/2017 S2B_MSIL1C_N0206_R104_T47Q  
26/01/2018 LC08_L2SP_131047_20180211 01/25/2018 S2A_MSIL1C_N0206_R104_T47Q  
11/02/2018 LC08_L2SP_131047_20180211 14/02/2018 S2A_MSIL1C_N0206_R104_T47Q 
15/03/2018 LC08_L2SP_131047_20180315 06/03/2018 S2A_MSIL1C_N0206_R104_T47Q  
13/01/2019 LC08_L2SP_131047_20190113 20/01/2019 S2A_MSIL2A_N0211_R104_T47Q  
29/01/2019 LC08_L2SP_131047_20190129 25/01/2019 S2B_MSIL2A_N0211_R104_T47Q 
14/02/2019 LC08_L2SP_131047_20190214 04/02/2019 S2B_MSIL2A_N0211_R104_T47Q  
16/01/2020 LC08_L2SP_131047_20200116 15/01/2020 S2A_MSIL2A_N0213_R104_T47Q  
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01/02/2020 LC08_L2SP_131047_20200201 04/02/2020 S2A_MSIL2A_N0214_R104_T47Q  
17/02/2020 LC08_L2SP_131047_20200217 14/02/2020 S2A_MSIL2A_N0214_R104_T47Q 
02/01/2021 LC08_L2SP_131047_20210102 04/01/2021 S2B_MSIL2A_N0214_R104_T47Q  
03/02/2021 LC08_L2SP_131047_20210203 03/02/2021 S2B_MSIL2A_N0214_R104_T47Q 
07/03/2021 LC08_L2SP_131047_20210307 05/03/2021 S2B_MSIL2A_N0214_R104_T47Q  
05/01/2022 LC08_L2SP_131047_20220105 09/01/2022 S2B_MSIL2A_N0301_R104_T47Q  
14/02/2022 LC09_L2SP_131047_20220214 13/02/2022 S2A_MSIL2A_N0400_R104_T47Q  
26/03/2022 LC08_L2SP_131047_20220326 05/03/2022 S2A_MSIL2A_N0400_R104_T47Q 

4.2. Image Processing with QGIS 
In this process, the images were filtered and calculated using QGIS software. The image was divided 

into two groups: Landsat 8 and Sentinel-2. For LST images, they were calculated based on Table 1, as 
shown in Figure 7. On the other hand, the images were merged before calculating various variables such 
as NDVI, NDBI, NDWI, LULC, EVI, and elevation from GISTDA, as shown in Figure 8. 

 
Figure 7. shows an example of the LST result obtained from the calculation process (by author). 
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Figure 8. shows an example of the results obtained from processing Sentinel-2 (by author). 

4.3. Mapping LULC 
Table 6 displays the results of the LULC classification for the years 2016 to 2022. The classification 

was performed using training data from 2016. The "Area" column displays the cumulative research site 
area for each year. The "%" column displays the ratio of the total area occupied by each LULC class. 
The study sites in 2016 encompassed a combined area of 437.4977 square kilometers. The research area 
is primarily characterized by vegetation covering 59% of the land. The sparse vegetation may be 
attributed to the arid conditions during the region's dry season. Leading to a reduction in plant growth. 
The second most prevalent type of land in the research area is built-on land, which accounts for 25% of 
the total area. The remaining region predominantly comprises soil. Accounting for 15 percent, while 
water sources contribute to a minor fraction. Subsequent years witnessed variations in LULC patterns. 
The vegetation coverage experienced a marginal decline from 59% in 2016 to 56% in 2021. The 
percentage rises to 58% in 2022. The level of urbanized land remains relatively stable. They constitute 
approximately 8-9% of research sites every year. The prevalence of buildings and soil in 2016 can be 
attributed to the arid climate conditions in the area. Consequently, there is a reduction in the rate of 
vegetable proliferation, as evidenced by satellite imagery data. The water coverage in the research area 
remains consistently at around 5% each year. The primary LULC transformation is characterized by a 
notable rise in soil occupation, escalating from 15% in 2016 to 31% in 2021, followed by a subsequent 
decline to 29% in 2022. The high soil coverage can result from a combination of factors, including rice 
cultivation and the density of vegetation coverage. 

In summary, these findings provide a valuable and concise representation of the LULC patterns in 
the research area throughout the specified time period. By utilizing the training dataset from 2016, it is 
possible to create maps for subsequent years. These maps can then be employed in various applications, 
including monitoring and documenting changes in land use patterns over time. Evaluating the effects of 
land use policies and interventions, as well as predicting future land conditions. changes. 
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Table 6. The percentage of the area from the LULC mapping process. 
Year 2016 2017 2018 2019 2020 2021 2022 
Area % 100% 100% 100% 100% 100% 100% 100% 
Built-up 17% 8% 8% 8% 8% 9% 9% 
Water 1% 5% 5% 6% 5% 5% 5% 
Vegetation 30% 58% 60% 62% 58% 56% 58% 
Soil 54% 29% 27% 24% 29% 31% 29% 

  
Figure 9. shows the trend of NDVI.  

 
Figure 10. shows the trend Temperature. 

Figure 9 shows the trend of NDVI and temperature. The NDVI part describes the vegetation cover 
and density. The range of NDVI data is from −1 to 1. Figure 10 explains the variability of vegetation 
density from 2016 to 2022. The vegetation density decreased from 2016 to 2020 and increased again in 
2021 and 2022. On the other hand, the temperature or LST obtained from QGIS shows that 2016 had the 
highest LST, and there was a decreasing trend of LST in the following years. 

4.4. The Process Creates the Dataset 
A total of 50,000 points are used per day, meaning that there are a total of 1,050,000 datasets that will 

be used to create a forecasting model. The results from removing the data found that there needs to be 
more accurate data sets. For example, data from Landsat 8 shows that some LST variables have a value 
of 0. This point means that the point where the test was performed was in a cloud, and therefore, the LST 
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could not be measured there. As a result, LST variables need to be filtered with Code Python to eliminate 
ranges correctly. On the other hand, Sentinel-2 variables appear to have a range of data that exceeds 
normal. The variable EVI will have a data range of −1 to 1, but for data in this set, there are some points 
where this variable is more significant than 300, so this data set must be omitted.  

4.5. The ML Results 
In this section, the study conducted experiments with four ML algorithms: RF, ANN, ABR, GBR, 

and LR. The first part discusses the correlation coefficients between variables in Table 6. 

Table 7. Factor Correlation. 
  NDVI NDBI LULC DEM EVI NDWI X Y 
NDVI 1 −0.6627 0.2246 −0.0945 0.0802 −0.9479 0.0135 −0.1083 
NDBI −0.6627 1 0.0926 0.1360 −0.0583 0.5588 −0.0660 0.0446 
LULC 0.2246 0.0926 1 0.0411 0.0118 −0.2999 −0.0316 −0.0277 
DEM −0.0945 0.1360 0.0411 1 −0.0100 0.0718 −0.5610 0.4601 
EVI 0.0802 −0.0583 0.0118 −0.0100 1 −0.0698 0.0079 −0.0126 
NDWI −0.9479 0.5588 −0.2999 0.0711 −0.0698 1 −0.0046 0.1115 
X 0.0135 −0.0660 −0.0316 −0.5610 0.0079 −0.0046 1 0.0716 
Y −0.1083 0.0446 −0.0277 0.4601 −0.0126 0.1115 0.0716 1 

Table 7 shows the variables with strong correlations. NDVI and NDWI have a correlation coefficient 
of −0.9479, meaning that the green spaces will decrease if there is an increase in water areas. NDVI and 
NDBI have a correlation coefficient of −0.6627, indicating that increasing green places decreases 
building areas. The other variables are classified as having weak correlations. Table 8 shows the 
measurement of four variables: MAE, MSE, and RMSE. And R2. The table displays the assessment 
criteria for five distinct ML models using various input features to anticipate the LST. The evaluation 
criteria encompass MAE, MSE, RMSE, and R2. The RF model exhibits the most exceptional performance 
in predicting LST, with the lowest MAE of 3.63 and RMSE of 5.12. The R2 0.41 indicates that the RF 
model can account for 41% of the variability in the LST data. 

On the other hand, the ABR model has the poorest performance in predicting LST, with the highest 
MAE of 5.42, MSE of 42.4, and RMSE of 6.51. The R2 0.05 indicates that the ABR model can only 
explain 5% of the variability in the LST data. The ANN and LR models demonstrate similar performance, 
with an MAE of 4.63 and 4.6, respectively, and an R2 value of 0.15. The GBR model performs better 
than the ANN and LR models, with an MAE of 4.12 and an R2 value of 0.3, but still not as good as the 
RF model. 

Table 8. The Result of Machine Learning. 
Model MAE MSE RMSE R-squared 
RF 3.63 26.16 5.12 0.41 
ABR 5.42 42.4 6.51 0.05 
ANN 4.63 38.11 6.17 0.15 
LR 4.6 37.88 6.15 0.15 
GBR 4.12 31.17 5.58 0.3 

5. Conclusion 
Urbanization is a worldwide phenomenon swiftly transforming the physical, social, and economic 

well-being of cities across the globe. An important consequence of urbanization on the environment is 
the formation of UHI, caused by the reduction of green space and the construction and construction of 
infrastructure. This results in the buildup of heat in urban regions. This event may entail significant 
repercussions. The inclusion of increased energy consumption leads to elevated levels of air pollution, 
resulting in a decline in residents' overall quality of life. 

LST is a significant environmental concern that can provide valuable insights into UHI energy usage 
and global warming. The RS satellite data are renowned in studies of LST due to their extensive coverage, 
superior spatial resolution, and ability to track changes over long periods of time. Nevertheless, 
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examining and manipulating substantial quantities of satellite data can be time-consuming and 
demanding. As a result, machine learning algorithms have emerged as a useful tool for analyzing and 
making predictions about LST based on available data. A satellite is an artificial object placed in orbit 
around a celestial body, such as the Earth, for various purposes, including communication, navigation, 
and scientific research. 

This study's objective was to predict LST in urban areas in Chiang Mai, Thailand, using ML models 
with Sentinel-2 and Landsat 8 data from 2016 to 2022. The data was processed in QGIS, and five diverse 
models, including RF, ABR, ANN, LR, and GB, were tested.  
This research showed that the RF model had the highest accuracy in predicting LST, with the lowest 
MAE and RMSE values among the models. However, all models had relatively low R2 values, 
indicating that there is still room for improvement in the accuracy of the predictions. The findings 
suggest that further research is essential to refine and improve the accuracy of the ML models for LST 
prediction. The study's results revealed the capability of using ML to predict LST in urban areas and 
revealed that RF has the highest capability among the tested models. 

Another benefit of investigating the UHI phenomenon is that it can identify areas with high 
concentrations of UHI. This dataset can be used by urban planners in Chiang Mai Province to determine 
policies to reduce heat or increase green space in certain areas. This predictive model can help urban 
planners design and plan better proactive measures. 

Despite the limitations of the current investigation, it provides valuable insights into the potential of 
ML in forecasting LST. It highlights the need for continued research to enhance the precision of these 
models. The application of ML algorithms to evaluate and anticipate LST from satellite data can 
significantly contribute to understanding UHI, energy consumption, and climate change. With the rapid 
pace of urbanization worldwide, this technology is poised to become an increasingly crucial tool in 
environmental science. 

In conclusion, this study demonstrates the viability of utilizing RS data and ML algorithms to predict 
LST and comprehend UHI development in urban areas. It also underscores the significance of employing 
machine learning techniques to address the consequences of UHI in urban regions. Further examination 
is warranted to refine the models' accuracy and determine effective measures to mitigate UHI's effects in 
urban areas, including developing a UHI Classification to help identify areas more specifically. These 
findings can assist policymakers and urban planners in Chiang Mai and other cities worldwide in devising 
effective policies and strategies for reducing the adverse impacts of UHI and promoting sustainable urban 
development. 
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